Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012;7(6):e39657.
doi: 10.1371/journal.pone.0039657. Epub 2012 Jun 26.

Satellite cells derived from obese humans with type 2 diabetes and differentiated into myocytes in vitro exhibit abnormal response to IL-6

Affiliations

Satellite cells derived from obese humans with type 2 diabetes and differentiated into myocytes in vitro exhibit abnormal response to IL-6

Camilla Scheele et al. PLoS One. 2012.

Abstract

Obesity and type 2 diabetes are associated with chronically elevated systemic levels of IL-6, a pro-inflammatory cytokine with a role in skeletal muscle metabolism that signals through the IL-6 receptor (IL-6Rα). We hypothesized that skeletal muscle in obesity-associated type 2 diabetes develops a resistance to IL-6. By utilizing western blot analysis, we demonstrate that IL-6Rα protein was down regulated in skeletal muscle biopsies from obese persons with and without type 2 diabetes. To further investigate the status of IL-6 signaling in skeletal muscle in obesity-associated type 2 diabetes, we isolated satellite cells from skeletal muscle of people that were healthy (He), obese (Ob) or were obese and had type 2 diabetes (DM), and differentiated them in vitro into myocytes. Down-regulation of IL-6Rα was conserved in Ob myocytes. In addition, acute IL-6 administration for 30, 60 and 120 minutes, resulted in a down-regulation of IL-6Rα protein in Ob myocytes compared to both He myocytes (P<0.05) and DM myocytes (P<0.05). Interestingly, there was a strong time-dependent regulation of IL-6Rα protein in response to IL-6 (P<0.001) in He myocytes, not present in the other groups. Assessing downstream signaling, DM, but not Ob myocytes demonstrated a trend towards an increased protein phosphorylation of STAT3 in DM myocytes (P = 0.067) accompanied by a reduced SOCS3 protein induction (P<0.05), in response to IL-6 administration. Despite this loss of negative control, IL-6 failed to increase AMPKα2 activity and IL-6 mRNA expression in DM myocytes. There was no difference in fusion capacity of myocytes between cell groups. Our data suggest that negative control of IL-6 signaling is increased in myocytes in obesity, whereas a dysfunctional IL-6 signaling is established further downstream of IL-6Rα in DM myocytes, possibly representing a novel mechanism by which skeletal muscle function is compromised in type 2 diabetes.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. IL-6Rα protein expression in skeletal muscle tissue biopsies and in He, Ob and DM myocytes in response to IL-6.
(A) Protein expression of IL-6Rα was assessed in skeletal muscle biopsies from the vastus lateralis muscle of non-obese (n = 10) or obese (n = 10) normal glucose tolerant (NGT) subjects and non-obese (n = 10) or obese (n = 9) subjects with type 2 diabetes (Table 1), using western blot analysis. Due to the variability in these in vivo samples, all blots are presented in Figure S1. A two-way ANOVA was performed, comparing the effect of obesity and the effect of diabetes on IL-6Rα protein expression. (B) Protein expression of IL-6Rα was assessed in satellite cells isolated from healthy (He) (n = 7), obese (Ob) (n = 7) and obese people (n = 7) with type 2 diabetes (DM) (Table 2). Satellite cells were differentiated into myocytes and treated with IL-6 (100 ng/ml) or control (PBS) for 30, 60 and 120 min. (C) Baseline IL-6Rα protein expression was normalized to total protein expression (as determined by reactive brown staining) and compared between groups by two-way ANOVAs. (D) IL-6 induced IL-6Rα protein expression was normalized to total protein and compared between groups by two-way ANOVAs and effect of time within groups was assessed with one-way ANOVAs. Data are presented as fold change (FC) between the control samples presented in B and C and samples treated with IL-6 (100 ng/ml). Data are mean ± SE. Groups were compared in pairs (i.e. He vs Ob, He vs DM and Ob vs DM) by two-way ANOVAs. Results from ANOVAs are marked in the figures with connecting capped arcs. *Results from Bonferroni post-tests, relative to He myocytes; *P<0.05, **P<0.01, ***P<0.001.
Figure 2
Figure 2. pSTAT3/STAT3 and SOCS3 protein expression in He, Ob and DM myocytes in response to IL-6.
(A) Protein expression of STAT3, pSTAT3 and SOCS3 was assessed in satellite cells isolated from healthy (He) (n = 7), obese (Ob) (n = 7) and obese people with type 2 diabetes (DM) (n = 7) (Table 2). Satellite cells were differentiated into myocytes and treated with IL-6 (100 ng/ml) or control (PBS) for 30, 60 and 120 min (same protein samples as in Figure 1 B-D). (B) IL-6 induced phosphorylated STAT3 was related to total STAT3 levels and IL-6 treated samples were presented as fold change from PBS treated samples. IL-6 induction of pSTAT3 was compared between groups by two-way ANOVAs. (C) Baseline SOCS3 protein expression in the samples described in A was normalized to total protein expression (as determined by reactive brown staining) and compared between groups by two-way ANOVAs. (D) IL-6 induced SOCS3 protein expression was normalized to total protein expression and compared between groups by two-way ANOVAs. Data are presented as fold change (FC) between the control samples presented in A and C and samples treated with IL-6 (100 ng/ml). Data are mean ± SE. Groups were compared in pairs (i.e. He vs Ob, He vs DM and Ob vs DM) by two-way ANOVAs. Results from ANOVAs are marked in the figures with connecting capped arcs. *Results from Bonferroni post-tests, relative to He myocytes; *P<0.05, **P<0.01, ***P<0.001.
Figure 3
Figure 3. IL-6 induction of IL-6 mRNA in human myocytes.
Muscle precursor cells derived from the vastus lateralis muscle of healthy (He), and obese people with type 2 diabetes (DM) (Table 3) (A) He myocytes (n = 5) and DM myocytes (n = 5) were treated with recombinant IL-6 or PBS for 60 minutes and IL-6 mRNA expression was assessed using qPCR. (B) Muscle precursor cells derived from healthy (n = 4), and obese people with type 2 diabetes (n = 4) were differentiated into myocytes and, during the last two days of differentiation transfected with siRNA targeting IL-6Rα. IL-6Rα knockdown was assessed using qPCR following 48 hrs of transfection. (C) IL-6 mRNA expression following IL-6Rα knockdown was assessed using qPCR following 48 hrs of transfection. Data were normalized to control treated samples within each cell subject and differences between groups were assessed using paired t-tests of dCT values. Data are mean ± SE *P<0.05, **P<0.01, ***P<0.001.
Figure 4
Figure 4. AMPK activity in response to IL-6 in myocytes from healthy and people with type 2 diabetes.
Muscle precursor cells derived from the vastus lateralis muscle of healthy (He) (n = 5), and obese people with type 2 diabetes (DM) (n = 5) (Table 3), were differentiated into myocytes and were treated with recombinant IL-6 for 30 or 60 minutes. Controls (Ctrl) were treated with PBS for 60 minutes. Protein was isolated and AMPK activity was measured (A) AMPK α1 activity in response to IL-6 was compared between groups by a two-way ANOVA. (B) AMPK α2 activity in response to IL-6 was compared between groups by a two-way ANOVA. While there was no effect of group, there was an interaction (P<0.01) and thus Bonferroni post-tests were performed. Effect of treatment within groups was performed by one-way ANOVAs. Data are mean ± SE. *Results from Bonferroni post-tests, relative to He myocytes; *P<0.05, **P<0.01, ***P<0.001.

References

    1. Ostrowski K, Rohde T, Zacho M, Asp S, Pedersen BK. Evidence that interleukin-6 is produced in human skeletal muscle during prolonged running. J Physiol 508 (Pt. 1998;3):949–953. - PMC - PubMed
    1. Steensberg A, van HG, Osada T, Sacchetti M, Saltin B, et al. Production of interleukin-6 in contracting human skeletal muscles can account for the exercise-induced increase in plasma interleukin-6. J Physiol 529 Pt 1: 237–242. PHY_11483 [pii] 2000. - PMC - PubMed
    1. Richter EA, Mikines KJ, Galbo H, Kiens B. Effect of exercise on insulin action in human skeletal muscle. J Appl Physiol. 1989;66:876–885. - PubMed
    1. Mohamed-Ali V, Goodrick S, Rawesh A, Katz DR, Miles JM, et al. Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-alpha, in vivo. J Clin Endocrinol Metab. 1997;82:4196–4200. - PubMed
    1. Bastard JP, Maachi M, Van Nhieu JT, Jardel C, Bruckert E, et al. Adipose tissue IL-6 content correlates with resistance to insulin activation of glucose uptake both in vivo and in vitro. J Clin Endocrinol Metab. 2002;87:2084–2089. - PubMed

Publication types

Associated data