Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 May 1;55(2):330-8.
doi: 10.1002/prot.10630.

The extended left-handed helix: a simple nucleic acid-binding motif

Affiliations

The extended left-handed helix: a simple nucleic acid-binding motif

Joshua M Hicks et al. Proteins. .

Abstract

The poly-proline type II extended left-handed helical structure is well represented in proteins. In an effort to determine the helix's role in nucleic acid recognition and binding, a survey of 258 nucleic acid-binding protein structures from the Protein Data Bank was conducted. Results indicate that left-handed helices are commonly found at the nucleic acid interfacial regions. Three examples are used to illustrate the utility of this structural element as a recognition motif. The third K homology domain of NOVA-2, the Epstein-Barr nuclear antigen-1, and the Drosophila paired protein homeodomain all contain left-handed helices involved in nucleic acid interactions. In each structure, these helices were previously unidentified as left-handed helices by secondary structure algorithms but, rather, were identified as either having small amounts of hydrogen bond patterns to the rest of the protein or as being "unstructured." Proposed mechanisms for nucleic acid interactions by the extended left-handed helix include both nonspecific and specific recognition. The observed interactions indicate that this secondary structure utilizes an increase in protein backbone exposure for nucleic acid recognition. Both main-chain and side-chain atoms are involved in specific and nonspecific hydrogen bonding to nucleobases or sugar-phosphates, respectively. Our results emphasize the need to classify the left-handed helix as a viable nucleic acid recognition and binding motif, similar to previously identified motifs such as the helix-turn-helix, zinc fingers, leucine zippers, and others.

PubMed Disclaimer

Publication types

MeSH terms

Associated data

LinkOut - more resources