Effect of flap mutations on structure of HIV-1 protease and inhibition by saquinavir and darunavir
- PMID: 18597780
- PMCID: PMC2754059
- DOI: 10.1016/j.jmb.2008.05.062
Effect of flap mutations on structure of HIV-1 protease and inhibition by saquinavir and darunavir
Abstract
HIV-1 (human immunodeficiency virus type 1) protease (PR) and its mutants are important antiviral drug targets. The PR flap region is critical for binding substrates or inhibitors and catalytic activity. Hence, mutations of flap residues frequently contribute to reduced susceptibility to PR inhibitors in drug-resistant HIV. Structural and kinetic analyses were used to investigate the role of flap residues Gly48, Ile50, and Ile54 in the development of drug resistance. The crystal structures of flap mutants PR(I50V) (PR with I50V mutation), PR(I54V) (PR with I54V mutation), and PR(I54M) (PR with I54M mutation) complexed with saquinavir (SQV) as well as PR(G48V) (PR with G48V mutation), PR(I54V), and PR(I54M) complexed with darunavir (DRV) were determined at resolutions of 1.05-1.40 A. The PR mutants showed changes in flap conformation, interactions with adjacent residues, inhibitor binding, and the conformation of the 80s loop relative to the wild-type PR. The PR contacts with DRV were closer in PR(G48V)-DRV than in the wild-type PR-DRV, whereas they were longer in PR(I54M)-DRV. The relative inhibition of PR(I54V) and that of PR(I54M) were similar for SQV and DRV. PR(G48V) was about twofold less susceptible to SQV than to DRV, whereas the opposite was observed for PR(I50V). The observed inhibition was in agreement with the association of G48V and I50V with clinical resistance to SQV and DRV, respectively. This analysis of structural and kinetic effects of the mutants will assist in the development of more effective inhibitors for drug-resistant HIV.
Figures









References
-
- Miller M, Schneider J, Sathyanarayana BK, Toth MV, Marshall GR, Clawson L, Selk L, Kent SB, Wlodawer A. Structure of complex of synthetic HIV-1 protease with a substrate-based inhibitor at 2.3 A resolution. Science. 1989;246:1149–52. - PubMed
-
- Gustchina A, Weber IT. Comparison of inhibitor binding in HIV-1 protease and in non-viral aspartic proteases: the role of the flap. FEBS. 1990;269:269–272. - PubMed
-
- Ishima R, Freedberg DI, Wang YX, Louis JM, Torchia DA. Flap opening and dimer-interface flexibility in the free and inhibitor-bound HIV protease. Structure. 1999;7:1047–55. - PubMed
Publication types
MeSH terms
Substances
Associated data
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials