Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Nov;26(22):6351-6369.
doi: 10.1111/mec.14373. Epub 2017 Nov 24.

Genomics of adaptive divergence with chromosome-scale heterogeneity in crossover rate

Affiliations

Genomics of adaptive divergence with chromosome-scale heterogeneity in crossover rate

Daniel Berner et al. Mol Ecol. 2017 Nov.

Abstract

Genetic differentiation between divergent populations is often greater in chromosome centres than peripheries. Commonly overlooked, this broadscale differentiation pattern is sometimes ascribed to heterogeneity in crossover rate and hence linked selection within chromosomes, but the underlying mechanisms remain incompletely understood. A literature survey across 46 organisms reveals that most eukaryotes indeed exhibit a reduced crossover rate in chromosome centres relative to the peripheries. Using simulations of populations diverging into ecologically different habitats through sorting of standing genetic variation, we demonstrate that such chromosome-scale heterogeneity in crossover rate, combined with polygenic divergent selection, causes stronger hitchhiking and especially barriers to gene flow across chromosome centres. Without requiring selection on new mutations, this rapidly leads to elevated population differentiation in the low-crossover centres relative to the high-crossover peripheries of chromosomes ("Chromosome Centre-Biased Differentiation", CCBD). Using simulated and empirical data, we then show that strong CCBD between populations can provide evidence of polygenic adaptive divergence with a phase of gene flow. We further demonstrate that chromosome-scale heterogeneity in crossover rate impacts analyses beyond that of population differentiation, including the inference of phylogenies and parallel adaptive evolution among populations, the detection of genetic loci under selection, and the interpretation of the strength of selection on genomic regions. Overall, our results call for a greater appreciation of chromosome-scale heterogeneity in crossover rate in evolutionary genomics.

Keywords: barrier to gene flow; hitchhiking; linked selection; population differentiation; recombination; standing genetic variation.

PubMed Disclaimer

Associated data

LinkOut - more resources