Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Mar;44(3):258-71.
doi: 10.1007/pl00006143.

The internal transcribed spacer 2 exhibits a common secondary structure in green algae and flowering plants

Affiliations

The internal transcribed spacer 2 exhibits a common secondary structure in green algae and flowering plants

J C Mai et al. J Mol Evol. 1997 Mar.

Abstract

Sequences of the Internal Transcribed Spacer 2 (ITS-2) regions of the nuclear rDNA repeats from 111 organisms of the family Volvocaceae (Chlorophyta) and unicellular organisms of the Volvocales, including Chlamydomonas reinhardtii, were determined. The use of thermodynamic energy optimization to generate secondary structures and phylogenetic comparative analysis of the spacer regions revealed a common secondary structure that is conserved despite wide intra- and interfamilial primary sequence divergence. The existence of this conserved higher-order structure is supported by the presence of numerous compensating basepair changes as well as by an evolutionary history of insertions and deletions that nevertheless maintains major aspects of the overall structure. Furthermore, this general structure is preserved across broad phylogenetic lines, as it is observed in the ITS-2s of other chlorophytes, including flowering plants; previous reports of common ITS-2 secondary structures in other eukaryotes were restricted to the order level. The reported ITS-2 structure possesses important conserved structural motifs which may help to mediate cleavages in the ITS-2 that occur during rRNA transcript processing. Their recognition can guide further studies of eukaryotic rRNA processing, and their application to sequence alignments may contribute significantly to the value of ITS-2 sequences in phylogenetic analyses at several taxonomic levels, but particularly in characterizing populations and species.

PubMed Disclaimer

Associated data

LinkOut - more resources