Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1988 Jun 1;174(2):287-95.
doi: 10.1111/j.1432-1033.1988.tb14096.x.

Plastid-localised seed acyl-carrier protein of Brassica napus is encoded by a distinct, nuclear multigene family

Affiliations
Free article
Comparative Study

Plastid-localised seed acyl-carrier protein of Brassica napus is encoded by a distinct, nuclear multigene family

R Safford et al. Eur J Biochem. .
Free article

Abstract

Acyl-carrier protein (ACP) is a key component involved in the regulation of fatty acid biosynthesis in plants. cDNA clones encoding ACP from Brassica napus (oil seed rape) embryos have been isolated using oligonucleotide probes derived from heterologous ACPs. Analysis of the DNA sequence data, in conjunction with N-terminal amino acid sequence data, revealed ACP to be synthesized from nuclear DNA as a precursor containing a 51-amino-acid N-terminal extension. Immunocytochemical studies showed ACP to be localised solely within the plastids of B. napus seed tissue and it would therefore appear that the N-terminal extension functions as a transit peptide to direct ACP into these organelles. Analysis of several cDNA clones revealed sequence heterogeneity and thus evidence for an ACP multigene family. From ten cDNA clones, six unique genes, encoding five different mature ACP polypeptides, were identified. Northern blot hybridisation studies provide evidence that the seed and leaf forms of rape ACP are encoded by structurally distinct gene sets.

PubMed Disclaimer

Publication types

LinkOut - more resources