Secondary structure constraints on the evolution of Drosophila 28 S ribosomal RNA expansion segments
- PMID: 1904940
- DOI: 10.1016/0022-2836(91)90178-9
Secondary structure constraints on the evolution of Drosophila 28 S ribosomal RNA expansion segments
Abstract
Eukaryotic ribosomal RNA genes contain rapidly evolving regions of unknown function termed expansion segments. We present the comparative analysis of the primary and secondary structure of two expansion segments from the large subunit rRNA gene of ten species of Drosophila and the tsetse fly species Glossina morsitans morsitans. At the primary sequence level, most of the differences observed in the sequences obtained are single base substitutions. This is in marked contrast with observations in vertebrate species in which the insertion or deletion of repetitive motifs, probably generated by a DNA-slippage mechanism, is a major factor in the evolution of these regions. The secondary structure of the two regions, supported by multiple compensatory base changes, is highly conserved between the species examined and supports the existence of a general folding pattern for all eukaryotes. Intriguingly, the evolutionary rate of expansion segments is very slow relative to other genic and non-genic regions of the Drosophila genome. These results suggest that the evolution of expansion segments in the rDNA multigene family is a balance between the homogenization of new mutations by unequal crossing over and a combination of selection against some such mutations per se and selection for subsequent compensatory mutations, in order to maintain a particular RNA secondary structure.
Similar articles
-
Evolution of the secondary structures and compensatory mutations of the ribosomal RNAs of Drosophila melanogaster.Mol Biol Evol. 1988 Jul;5(4):393-414. doi: 10.1093/oxfordjournals.molbev.a040501. Mol Biol Evol. 1988. PMID: 3136295
-
Molecular coevolution among cryptically simple expansion segments of eukaryotic 26S/28S rRNAs.Mol Biol Evol. 1988 Jul;5(4):377-91. doi: 10.1093/oxfordjournals.molbev.a040505. Mol Biol Evol. 1988. PMID: 3405077
-
Complete sequences of the rRNA genes of Drosophila melanogaster.Mol Biol Evol. 1988 Jul;5(4):366-76. doi: 10.1093/oxfordjournals.molbev.a040500. Mol Biol Evol. 1988. PMID: 3136294
-
Natural selection and ribosomal DNA in Drosophila.Genome. 1989;31(1):296-303. doi: 10.1139/g89-047. Genome. 1989. PMID: 2556326 Review.
-
Y chromosomal fertility genes of Drosophila: a new type of eukaryotic genes.Genome. 1989;31(2):561-71. doi: 10.1139/g89-105. Genome. 1989. PMID: 2561109 Review.
Cited by
-
An rRNA variable region has an evolutionarily conserved essential role despite sequence divergence.Mol Cell Biol. 1994 Jun;14(6):4203-15. doi: 10.1128/mcb.14.6.4203-4215.1994. Mol Cell Biol. 1994. PMID: 8196658 Free PMC article.
-
Polytene chromosomes as indicators of phylogeny in several species groups of Drosophila.BMC Evol Biol. 2001;1:6. doi: 10.1186/1471-2148-1-6. Epub 2001 Oct 10. BMC Evol Biol. 2001. PMID: 11696235 Free PMC article.
-
A molecular phylogeny of the Chalcidoidea (Hymenoptera).PLoS One. 2011;6(11):e27023. doi: 10.1371/journal.pone.0027023. Epub 2011 Nov 3. PLoS One. 2011. PMID: 22087244 Free PMC article.
-
Aspects of nonrandom turnover involved in the concerted evolution of intergenic spacers within the ribosomal DNA of Drosophila melanogaster.J Mol Evol. 1994 Aug;39(2):151-9. doi: 10.1007/BF00163804. J Mol Evol. 1994. PMID: 7932779
-
Dropout alignment allows homology recognition and evolutionary analysis of rDNA intergenic spacers.J Mol Evol. 2008 Apr;66(4):368-83. doi: 10.1007/s00239-008-9090-8. Epub 2008 Mar 25. J Mol Evol. 2008. PMID: 18363028
Publication types
MeSH terms
Substances
Associated data
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
LinkOut - more resources
Full Text Sources
Molecular Biology Databases