Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Oct;22(10):1027-33.
doi: 10.1248/bpb.22.1027.

Organ specific expression of thyroid hormone receptor mRNA and protein in different human tissues

Affiliations
Free article

Organ specific expression of thyroid hormone receptor mRNA and protein in different human tissues

S Shahrara et al. Biol Pharm Bull. 1999 Oct.
Free article

Abstract

The major physiologic effect of thyroid hormone is thought to be initiated by the binding of T3 to the DNA binding thyroid hormone receptor (TR). The aim of this study has been to characterize the organ specific expression of thyroid hormone receptor mRNA, as well as its protein distribution and molecular weight in man. Determination of TRalpha1, alpha2, beta1 and beta2 mRNA molecular size was performed using Northern blot analysis in the human heart, brain, placenta, lung, liver, skeletal muscle, kidney and pancreas. TRalpha1, alpha2 and beta1 protein expression was characterized by Western blot analysis of human tissues. TRalpha1 mRNA of 4.9 kb was detected in all 8 tissues analyzed, with varying abundance in the various tissues. TRalpha2 mRNA was detected in 2 different sizes, with higher intensity at 5.7 and lower intensity at 3.2 kb. There were, however, multiple TRbeta1 mRNA of 8, 2 and 1 kb detected. TRbeta1 transcripts of 2 kb and 1 kb showed an organ specific pattern of expression. Multiple TRbeta2 mRNA of 6.6, 5.2, 2.5 and 2.4 kb were detected, as well as a unique 1 kb transcript, in the heart. TRbeta2 transcripts also displayed tissue specific expression. Western blot analysis displayed a single band of 48 kD for TRalpha1. The abundance of the TRalpha1 immunoreactive band was highest in the heart, brain, kidney and skeletal muscle, and lowest in the liver, placenta and lung, while no signals were detected in the spleen. The TRalpha2 specific antibody detected a band of 58 kD in all the tissues analyzed. The relative intensity of the immunoreactive TRalpha2 band detected was highest in the placenta and lung, with a medium concentration range in skeletal muscle, the heart and kidney. The TRalpha2 protein concentration was lowest in the spleen, liver and brain. Human TRbeta1 protein was detected as 55 and 52 kD bands, as well as a unique band of 45 kD in heart. The 52 kD band was detected in all tissues except the kidney and spleen. The 55 kD band was not detected in the brain or liver. Both the 55 and 52 kD TRbeta1 immunoreactive bands were detected in the placenta, lung, heart and skeletal muscle with similar intensity. In conclusion, specific patterns of TR mRNA and protein expression revealed characteristic organ distributions of each subtype. Unique cardiac expression was observed for TRbeta2 mRNA and for TRbeta1 protein.

PubMed Disclaimer

Publication types

Associated data